
Azure Container Apps

Bojan Vrhovnik

Senior Cloud Solution Architect

bovrhovn@microsoft.com

@bvrhovnik

mailto:bovrhovn@microsoft.com

AI

Containers and serverless

Security

Managed databases

Cloud operations anywhere

Development tools

Community

Storage

AUTO-SCALE CRITERIA

Scaling is determined
by the number of
concurrent HTTP requests

Scaling is determined
by the level of CPU
or memory load

Individual microservices can

scale independently using

any KEDA scale triggers

Scaling is determined
by the number of
concurrent HTTP requests

Scaling is determined
by the number of
messages in the queue

Public API
endpoints

Background
processingMicroservices

Web

Apps

Event-driven
processing

E.g., API app with HTTP
requests split between
two revisions of the app

E.g., Continuously
running background process
transforms data in a database

Microservices architecture
with the option to
integrate with Dapr

E.g., Web app with custom
domain, TLS certificates, and
integrated authentication

HTTP TRAFFIC

REVISION 2REVISION 1

80% 20%

MICROSERVICE B

MICROSERVICE C

MICROSERVICE A

E.g., Queue reader app
that processes messages
as they arrive in a queue

Application focus, infrastructure abstraction

Azure Container Apps (ACA)
Infrastructure focus, higher flexibility

Azure Kubernetes Service (AKS)

Core value proposition

Managed Kubernetes cluster in Azure with full access to

the Kubernetes API server and high level of control over

cluster configuration with a node-based pricing model

Fully-managed serverless abstraction on top of Kubernetes

infrastructure, purpose built for managing and scaling event-driven

microservices with a consumption-based pricing model

Optimized for

• Upstream feature parity with a managed control plane

• Operations flexibility with advanced customization

• Experienced Kubernetes operators

• Platform-as-a-Service experience with serverless scale

• Developer productivity with low operations overhead

• Linux-based, general-purpose stateless containers

OSS Integration

• Provides a set of cluster extensions and add-ons for

operators to enable OSS components in-cluster including

Dapr, KEDA, Open Service Mesh, GitOps (Flux), Pod

Identity, etc.

• Supports manual installation via Kubernetes manifests

Includes opinionated platform capabilities powered by CNCF

projects including Dapr, KEDA and Envoy which are fully

platform-managed and supported

• Envoy: managed ingress and traffic splitting

• KEDA: managed, event-driven autoscale

• Dapr: codified best practices for microservices

Interaction model

• Operators deploy node-based AKS clusters using Azure

Portal, CLI or Infrastructure-as-Code templates (IaC)

• Developers deploy containers via Kubernetes deployment

manifests or HELM charts to logically-isolated namespaces

within the cluster

• Developers deploy containers as individual Container Apps

using Azure Portal, CLI or IaC templates without any

Kubernetes manifests required

• Related container apps are deployed to a shared Container

Apps environment comparable to a Kubernetes namespace

Demo
Getting started

Environments

Environments define an

isolation and observability

boundary around a

collection of container

apps deployed in the

same virtual network

Container app 1

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Container app 2

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Environment (virtual network boundary)

Revisions

Revisions are

immutable version

snapshots of a

container app

Container app 1

Container app 2

Revision 1

Replica

Container(s)

Environment (virtual network boundary)

Single-revision mode

Multi-revision mode

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Container Apps

A Container App hosts a

single, independent

microservice and includes

its desired state

configuration

Environment (virtual network boundary)

Container app 1

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Container app 2

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Replicas

Replicas are the unit of

scale in container apps,

with the default replica

count being 0

Environment (virtual network boundary)

Container app 1

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Container app 2

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Containers

Containers in Azure

Container Apps can use

any development stack of

your choice

Container app 1

Revision 1 Revision 2

Replica Replica

Container(s)

Container app 2

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

Environment (virtual network boundary)

Container(s) Container(s) Container(s)

Replica Replica

Logging

Containers write logs to

standard output or

standard error streams

surfaced via Log

Analytics

Container app 1

Revision 1 Revision 2

Replica Replica

Container(s) Container(s)

stderr/stdout stderr/stdout

Log Analytics

Environment

Demo
Getting from local

machine to the cloud

github.com/vrhovnik/conf24-2023-aca-demos

Microservice development challenges

• How do I integrate with external systems that my app has to react and respond to?

• How do I create event driven apps which reliably send events from one service to another?

• How do I create long running, stateful services that can recover from failures?

• How do I observe the calls and events between my services to diagnose issues in

production?

• How do I discover other services and call methods on them?

• How do I secure communication between services?

• How do I prevent committing to a technology early and have the flexibility to swap out an

alternative based on project or environment changes?

Microservices using any language or framework
Any cloud or edge infrastructure

Distributed Application

Runtime

Portable, event-driven, runtime for

building distributed applications

across cloud and edge

dapr.io

Microsoft services written in any code or framework

HTTP API gRPCz API

Service-to-
service

invocation

State
management

Publish
and

subscribe

Resource
bindings

and triggers

Actors Observability ExtensibleSecrets

Hosting infrastructure

Azure Arc On-premises

https://dapr.io/

FirebaseRedis cacheAzure

Cosmos DB

Any Dapr

state store

State management

Dapr provide apps with

state management

capabilities for CRUD

operations, transactions

and more

Container App A

Containerized application sidecar

http://localhost:3500/v1.0/state/ordersPOST

Demo
Dapr usage

Resources

Deploy your first
Container App
aka.ms/containerapps/deploy

Azure Container
Apps
documentation
aka.ms/containerapps/docs

Container Apps
GitHub page
aka.ms/containerapps/github

Try for free
aka.ms/containerapps/tryfree

Learn More about
Azure Container
Apps

https://aka.ms/containerapps/deploy
https://aka.ms/containerapps/docs
https://aka.ms/containerapps/github
https://aka.ms/containerapps/tryfree

	Slide 1: Azure Container Apps
	Slide 2: Building cloud-native on Azure
	Slide 3: What can you build with Azure Container Apps?
	Slide 4: How does ACA compare to AKS?
	Slide 5: Demo Getting started
	Slide 6: Environments
	Slide 7: Revisions
	Slide 8: Container Apps
	Slide 9: Replicas
	Slide 10: Containers
	Slide 11: Logging
	Slide 12: Demo Getting from local machine to the cloud
	Slide 13: Microservice development challenges
	Slide 14: Microservices using any language or framework Any cloud or edge infrastructure
	Slide 15: State management
	Slide 16: Demo Dapr usage
	Slide 17: Resources

